Greyhound Neuropathy - what lessons to learn?

Dr. med.vet. Barbara Kessler Chair for Molecular Animal Breeding and Biotechnology Veterinary Faculty Ludwig-Maximilians-University Munich

Greyhound Hereditary Neuropathy

(also: Hereditary Polyneuropathy)

- Onset: 3 9 months of age
- Generalized muscle weakness
- Exercise intolerance
- "bunny-hopping" gait
- Absence of reflexes

- Laryngeal affection: changes in voice, regurgitation
- Final stage: severe ataxia, muscle atrophy, inability to stand
- **No pain!** general condition not affected!

Greyhound Hereditary Neuropathy

cause: missense mutation in the NDRG1-gene

- Undersupply of the peripheric nerve system, leading to nerve degeneration
- Due to the lack of nervous stimulation the muscles degrade gradually
- recessive inheritance
- Resembles human Charcot-Marie-Tooth-Disease type 4D
- DNA test available since 2009
- Percentage of carriers was very high in the population!

What to know about Neuropathy?

- Test your dogs (if they are not free by parentage)
- Never breed two carriers!

	Ν	n
Ν	NN	Nn
Ν	NN	Nn

• That's it!

Mutations (I)

- Natural process!
- Based on faults in DNA duplication
- Somatic cell ("body cells"): no impact on the population
- Germline (reproductive cells, sperm/oocytes): passing on to next generation
- Loss of function: recessive inheritance
- Gain of function: dominant inheritance (rare)
- Mutations aren't mandatory negative they are the motor of evolution!

Mutations (II)

- Every living creature carries a load of several recessive mutations – most of them unknown
- One intact allele is usually sufficient and can maintain function
- Recessive mutations only become visible if an individual has two defective alleles, inherited from each parent and descending from a common ancestor

Homozygousity (I)

Definition: both alleles on a gene locus are identical

Natural situation:

- Homozygousity is highly undesirable
- Variation in alleles is essential for the adaptability of an organism (or a population) on environmental conditions
- Strong mechanisms to avoid inbreeding

 → homozygousity for mutations is a very unlikely event
 in wild populations

Homozygousity (II)

Artificial selection:

- Targeted inbreeding is a widely used selection tool to archieve homozygousity for desired traits
- The more homozygous an animal, the more reliably it will inherit its characteristic traits to its offspring
- Inbreeding increases the probability to produce offspring with certain desired traits

Negative aspects of homozygousity

- Also undesired traits will be homozygous → recessive diseases appear
- A high genetic variability on DLA alleles is crucial for a functional immune system (homozygousity on these gene loci is correlated to a lot of autoimmune diseases like SLO, AIHA, autoimmune meningitis, autoimmune nephritis, hypothyroidism...)

Matador sires

- Definition: a matador sire is a sire who is overrepresented in all matings of his generation
- Cannot be determined by absolute numbers in a popular breed more than 10 matings can be at an average, whilst in a small breed even 5 litters might be far too many

The charm of matador sires

- Proven sires offer a higher predictability for the future puppies' qualities
- Puppies of champion sires might be easier to sell
- "Safety culture" in breeding is understandable in many ways, but it will ruin every breeds gene pool!

The harm of matador sires (I)

- The smaller the breed population, the higher the risk!
- Every matador sire excludes a lot of other males of his generation from contributing to the gene pool – the alleles of these males are lost
- The frequent use of matador sires accelerates the inbreeding levels within the population enormously
- In worst case, very few single sires are introduced in nearly every bloodline worldwide, to follow an actually fashionable type

The harm of matador sires (II)

Consequences:

- Loss of genetic diversity
- Increasing homozygousity
- Impossibility to avoid linebreeding on these sires (because they appear in nearly every pedigree)

Actual matadors

- Windrock Fernando
 11 litters (2003 2016)
- Boughton Benvoluto 6 litters (2003 – 2008)
- Epic Brave at Sobers
 - 6 litters (2003 2009)
- Showline Sporting Trophy at Sobers 11 litters (2009 - 2013) \rightarrow 33 litters by his F1 offspring

- \rightarrow 13 litters by his F1 offspring
- \rightarrow 25 litters by his F1 offspring
- \rightarrow 33 litters by his F1 offspring

Presence of historic sires in the pedigrees of today

Treetops Hawk (1951)

12 generations pedigree:

- Windrock Fernando (1999)
 → 507 x (25,7%)
- Boughton Benvoluto (2000)
 → 449 x (29,0%)
- Epic Brave at Sobers (2001)
 → 470 x (25,2%)
- Showline Sporting Trophy at Sobers (2009) → 493 x (17,6%)

What caused Neuropathy?

The occurrence of Neuropathy was neither bad luck, nor the fault of a certain dog (or certain breeder) – it was the direct consequence of our breeding strategies!

What caused neuropathy?

- The mutation happened accidentally and was passed from generation to generation without being detected
- Excessive breeding from a very restricted number of males helped to spread the defect widely within the population
- More and more inbreeding on these great dogs of the past increased the likelihood that descendants inherited the mutated allele from both parents
 - \rightarrow first neuropathy cases occurred
- Misguided breeding strategies didn't cause the mutation, but they lead to an undetected spreading all over the population

What we should learn:

- We cannot prevent the occurrence of new mutations
- But we should take care that unknown mutations cannot uncontrolledly spread over the population again
- Misleaded breeding strategies of the past (over-use of matador sires, excessive inbreeding and impoverishment of the gene pool) cannot be undone, but we should not repeat these faults again and again and again!

What we have learnt...

• NOTHING!

- Matador breeding continues
- Breeding programmes all over the world are more and more based on the same dogs
- Unfashionable bloodlines disappear
- Impoverishment of the gene pool is rather accelerated
- Neuropathy was a "warning shot", which went unheard
- If we don't change our breeding strategies, it's not the question IF we will face a new recessive disease - but only which one and when...

What to do...

- Testing for known recessive traits
- Testing for genetic variability (www.mydogdna.com, www.feragen.at,...)

Conservation and enlargement of the gene pool!

What to do...

- Strict limitation of stud services !!!!!!!!!
 No Show Greyhound male should produce more than 4 litters worldwide!
- Conservation of old, rare and unfashionable bloodlines
- Crossbreeding to working lines
- Change of breeding strategies to population genetic aspects: no more "only the best to the best", but "breed from as many different individuals as possible"

Breeding from carriers or not?

- Excluding all neuropathy carriers from breeding would solve the neuropathy problem within one generation
- But it would reduce the gene pool remarkably, reducing genetic diversity and increasing the risk to accumulate new mutations
- Despite its clinical severity, Neuropathy is the only disease in the breed we can control to 100%!

 \rightarrow better take all efforts to fight against the cause (=the lack of genetic variability) instead of the symptom (the disease)!

What could happen...

Rumford S-litter: mother: tested free father: unknown

Genetic testing Greyhound Neuropathy

You have contributed samples to our research project "Hereditary Greyhound Neuropathy of Show Greyhounds". We applied a DNA test that allows the unequivocal diagnosis of carriers for this monogenetic autosomal recessive inherited disease.

Lab ID	Dog	Kennel	ID	Sex	Date of	Neuropathy
					birth	genotype
GY319	Sibelius	Rumford		m	06.06.2010	carrier
GY320	Salvator	Rumford		m	06.06.2010	carrier
GY321	Somersault	Rumford			06.06.2010	carrier
GY322	Souvenir	Rumford			06.06.2010	carrier
GY323	Souvereign	Rumford		m	06.06.2010	carrier
GY324	Silvretta	Rumford		f	06.06.2010	carrier

Kind regards

Cr Dogullo

Prof. Dr. Cord Drögemüller

What also could happen...

Rumford U-litter: mother: carrier father: free

Genetic testing Greyhound Neuropathy

You have contributed samples to our research project "Hereditary Greyhound Neuropathy of Show Greyhounds". We applied a DNA test that allows the unequivocal diagnosis of carriers for this monogenic autosomal recessive inherited disease.

Lab ID	Dog	Kennel	ID	Chip ID	Sex	DOB	Neuropathy genetype
GY417	Ustinov	Rumford		276098106210294	m		free
GY418	Ultravox	Rumford		276098106199817	w		free
GY419	Ultra Violet	Rumford		276098106200497	w		free
GY420	Ultramarin	Rumford		276098106066600	w		free
GY421	Unicum	Rumford		276098106197682	w		free
GY422	Unicorn	Rumford		276098106196334	w		free
GY423	Uppsala	Rumford		276098106198402	w	8	free
GY424	Umberta	Rumford		276098106209522	w		free

Kind regards

C. Dom The

Thank you for your attention!

For further questions:

b.kessler@gen.vetmed.uni-muenchen.de

barbara.kessler@gmx.de

For Gucci