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Abstract: Augmenting the genetic diversity of small, inbred populations by the introduction of new 

individuals is often termed “genetic rescue“. An example is the Norwegian Lundehund, a small 

spitz dog with inbreeding-related health problems that is being crossed with three Nordic breeds, 

including the Norwegian Buhund. Conservation breeding decisions for the (typically) small number 

of outcrossed individuals are vital for managing the rescue process, and we genotyped the Lun-

dehund (n = 12), the Buhund (n = 12), their crosses (F1, n = 7) and first-generation backcrosses to the 

Lundehund (F2, n = 12) with >170,000 single nucleotide polymorphism loci to compare their levels 

of genetic diversity. We predicted that genome-wide diversity in F2 dogs would be higher than in 

the Lundehund but lower than in the F1 and the Buhund, and the heterozygosity values showed 

the expected patterns. We also found that runs of homozygosity, extended chromosomal regions of 

homozygous genotypes inherited from a common ancestor, were reduced in F2 individuals com-

pared with Lundehund individuals. Our analyses demonstrate the benefits of outcrossing but indi-

cate that some of the acquired genetic diversity is lost following immediate backcrossing. Addi-

tional breeding among F2 crosses could therefore merit from further consideration in genetic rescue 

management. 

Keywords: conservation breeding; domestic dogs; genetic diversity; native breeds; outcrossing; 

population recovery 

 

1. Introduction 

1.1. Genetic Rescue in Domestic and Wild Populations 

Increasing the genetic variability of small, isolated populations by the spontaneous 

or human-planned introduction of new individuals is often referred to as “genetic rescue” 

[1–4]. The positive effect of this management tool has been documented both in domestic 

and wild populations [1], although the long-term outcome can be difficult to evaluate [5], 

and some concerns exist that genetic rescue might lead to outbreeding depression [6]. De-

spite breeds of domestic dog (Canis lupus familiaris) being comparable to small and closed 

populations with a high frequency of breed-specific genetic disorders, genetic rescue by 

Citation: Melis, C.; Pertoldi, C.;  

Ludington, W.B.; Beuchat, C.;  

Qvigstad, G.; Stronen, A.V. Genetic 

Rescue of the Highly Inbred  

Norwegian Lundehund. Genes 2022, 

13, 163. https://doi.org/10.3390/ 

genes13010163 

Academic Editor: Benjamin N. Sacks 

Received: 15 December 2021 

Accepted: 14 January 2022 

Published: 17 January 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Genes 2022, 13, 163 2 of 12 
 

 

outcrossing with individuals of another breed is not a well-established practice among 

breeders. The main reasons for this are concerns about (1) contaminating lineage “purity”, 

(2) losing breed-specific phenotypic traits and (3) incorporating “new” genetic diseases 

from other dog breeds (unwanted introgression of deleterious alleles) [7]. 

Nevertheless, genetic disorders are likely to be less prevalent in a dog breed if a large, 

and therefore diverse, gene pool is maintained. Alleles with a negative effect on fitness 

are present in any population but only at low frequencies due to natural selection. How-

ever, when genetic variability is reduced, the frequency of such alleles will increase, 

whereby genetic disorders suddenly “appear” in the gene pool [7]. For this reason, it is 

challenging to manage genetic disorders by test screening in small populations. By ex-

cluding affected individuals from reproduction, we are also reducing the number of mat-

ing individuals (the effective population size) and, thus, the gene pool. 

One important limitation of outcrossing programs for small populations, as revealed 

by computer simulations of different breeding schemes, is that outcrossing followed by 

backcrossing to the original population might only provide a short-term rescue effect, un-

less outcrossing is repeated continuously [7]. This is also supported by well-documented 

examples of genetic rescue in small and isolated wildlife populations, such as wolves (C. 

lupus) in Isle Royal and island foxes (Urocyon littoralis) [8]. 

Some examples of outcrossing in dog breeding are described on various web pages, 

although these efforts were initiated privately and are, as far as we know, not yet scientif-

ically documented. For example, in 1973, the Pointer was crossbred to the Dalmatian by 

the geneticist and Dalmatian breeder Robert Schaible, because all Dalmatians worldwide 

tested positive for a metabolic illness called hyperuricosuria [9]. The first request to regis-

ter a litter of Pointer x Dalmatian dogs to the American Kennel Club (AKC) was carried 

out in 1980, after five generations of backcrossing to Dalmatians to recover all breed-spe-

cific phenotypic traits. However, it took almost 30 years of controversy before more de-

scendants of this backcrossing project could be registered to AKC [9]. Similarly, to avoid 

tail docking in Boxers, two Corgi × Boxer females were backcrossed to the Boxer in 1992 

by the geneticist and Boxer breeder Dr. Bruce Cattanach [10], and a line of short-tailed 

(bobtail) Boxers that carry the dominant bobtail gene was developed in the United King-

dom. 

In 2011, the Irish Kennel Club (IKC) established an outcrossing program between the 

Irish Red and White Setter and the Irish Setter and, in 2017, made a call to breeders world-

wide to participate in the international outcrossing program to increase the genetic diver-

sity of the Irish Red and White Setter [11]. However, it was only possible to access an 

archived copy of the announcement made by the IKC on the web [11], and, to our 

knowledge, no scientific publications or systematic documentation of the progress and 

results of this ongoing project have yet been made available. 

1.2. Breed History and Typical Traits 

The Norwegian Lundehund (hereafter Lundehund) is a small spitz dog traditionally 

used to hunt Atlantic puffins (Fratercula arctica, hereafter puffins) on steep cliffs along the 

northern coast of Norway. The breed is considered a cultural heritage and has several 

unique phenotypic traits, such as enhanced flexibility of the neck and shoulder joints, 

foldable ears and extra toes (polydactyly) on both front and back legs [12]. These peculiar 

traits might be the result of both natural and artificial selection, as they offer advantages 

when searching and retrieving puffins. The high flexibility of the joints would allow better 

mobility in narrow tunnels at the end of which puffins nest. Foldable ears would prevent 

dirt and parasites from entering the ears when working underground, and the combina-

tion of high flexibility and polydactyly would ensure better grip on the steep and loose 

terrain of the cliffs [13]. The small population suffered two bottlenecks in the 1940s and 

the 1960s, which resulted in the Lundehund being among the dog breeds with the highest 

reported inbreeding, as measured by microsatellite markers [12], single nucleotide poly-

morphisms (SNPs) [14,15] and genealogical data [16]. 
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Due to a major effort to rescue the breed, today, there are about 1500 Lundehund 

individuals in the world, and about 900 of these live in Norway (https://na-

tron.vm.ntnu.no/nlk accessed on 10.01.2011). Therefore, the breed is not at immediate risk 

of extinction. 

However, the effective population size (Ne) of the global Lundehund population was 

estimated to be very low based both on pedigree data [16] (Ne = 13) and on molecular data 

[17] (Ne = 28). Moreover, the Lundehund shows signs of inbreeding depression by reduced 

fertility due to small litter size, problems with mating behavior (probably due to inbreed-

ing avoidance mechanisms) and low sperm quality [16]. Additionally, the Lundehund has 

a predisposition to develop intestinal lymphangiectasia, a protein-losing enteropathy that 

can cause symptoms such as intermittent diarrhea, vomiting, weight loss and ascites, of-

ten reported as the “Lundehund syndrome” (hereafter LS). In addition, chronic atrophic 

gastritis and gastric neoplasms are common in dogs with LS [14,15,17–21]. For this reason, 

breeders inform future owners about potential symptoms that could arise and require im-

mediate veterinary treatment. Moreover, they advise new owners to feed their dogs with 

a diet low in fat content. Despite these preventive efforts, a study on mortality causes in 

the Lundehund conducted in 2010–2012 showed that 30% of deaths before 11 years of age 

occurred as a consequence of LS and another 10% of other gastrointestinal diseases [22]. 

Moreover, many dogs experience several acute episodes of LS throughout their lives, 

which require expensive treatment and negatively affect their quality of life. The pattern 

of inheritance of LS is not well understood [21] and might, at least in part, be explained 

by polygenic inheritance and a high frequency—or fixation—of the responsible gene(s). 

1.3. The Outbreeding Project 

These issues raised the question of whether it was ethical to continue breeding the 

Lundehund, and they motivated the Norwegian Kennel Club (NKK) to start an outbreed-

ing project in 2014, which is still ongoing [16,23]. The aims of the project are to (1) increase 

the genetic variability of the breed, (2) improve fertility and (3) reduce the occurrence of 

LS in the population, while, at the same time, maintaining the unique traits of this breed 

[16,24]. 

Based on behavioral and morphological traits, shared history and genetic distance, 

three candidate breeds for outcrossing were selected by the NKK: the Norwegian Buhund 

(hereafter Buhund) (Figure 1b), the Norrbottenspets (from Sweden) and the Icelandic 

sheepdog [23]. 
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Figure 1. Dog breeds used in the outbreeding project and their descendants. (a): Norwegian Lun-

dehund; (b): Norwegian Buhund; (c): F1 first-generation crossing of Lundehund × Buhund; (d): F2 

second-generation crossing of F1 × Lundehund. All individuals are females. (a): Photo by Dagrunn 

Mæhlen, (b): photo by Ina Margrethe Gabrielsen Egren, (c): photo by Cathrine Brekke, (d): photo by 

Arild Espelien. 

The plan is to keep the crossings with these three breeds as three separate lineages 

with their own studbook and to monitor them for several generations before considering 

their inclusion in the Lundehund population and registering them in the main Lun-

dehund studbook. All dogs used in the project were carefully selected based on health 

requirements established by the NKK, and each combination of Lundehund ×Buhund also 

had to be approved by the NKK. Because the Buhund (12–18 kg) is larger than the Lun-

dehund (6–9 kg), the first generation of crosses was made by mating a Buhund dam with 

a Lundehund sire. The Buhund dam should fulfil several requirements to be included in 

the project, such as to have grade A or B hip dysplasia (HD), grade 0 patella luxation 

(dislocated kneecap), be free of hereditary eye disorders, have a good temperament and 

generally have good health, confirmed by a health certificate. The same requirements, ex-

cept HD status, applied to the Lundehund sire. In addition, both the Buhund and the Lun-

dehund should have proven their fertility by having had litters before. These rather strict 

requirements, in addition to the difficulty in finding Buhund dam owners who were will-

ing to let their dogs participate in the outcrossing project, limited the number of crossings 

that could be performed. The first two litters of the Lundehund × Buhund crosses were 

born in 2014, and their offspring was bred back to the Lundehund (Appendix A). All 

crosses are evaluated for good health, morphology and behavior at two years of age by a 

team of specialists, including a certified judge, before inclusion in the breeding project. 

The dogs are also checked for HD, patella luxation and hereditary eye diseases by a vet-

erinarian officially recognized by NKK, as these conditions are present in the Buhund 

population. However, the Lundehund is not usually affected by these conditions, and 

NKK does not require any genetic test to breed them, which also allows a further reduc-

tion in the gene pool to be avoided. Individuals with serious behavioral issues (signs of 

fear or aggression) or health-related issues, such as monorchism or a severe degree of hip 
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dysplasia, are excluded from the breeding project. Although individuals with light dys-

plasia are not given priority, these can nonetheless still be bred with healthy individuals. 

At this stage of the outbreeding project, the criteria for inclusion in breeding rely on health 

and behavior only and not on exterior appearance. The second-generation crosses pro-

duced by the project show all the specific traits, such as polydactyly, foldable ears and 

joint flexibility, whereas there is still a relatively large morphological variation in size, 

bone structure and ear shape. This variation would be rather normal in other dog breeds 

with a more diverse genetic pool, but with their reduced genetic variation, Lundehund 

individuals tend to show very low morphological variation. To date, none of the F1 and 

F2 individuals have shown signs of developing LS, although we should underline that the 

oldest F2 individuals are only five years old, and the success of the outbreeding project 

should be evaluated on a longer term. For the nine litters of F2 individuals that have been 

produced to date, the mean litter size was = 4.2 and the median was = 5, whereas for the 

Lundehund, both mean and median litter sizes were = 3 [25]. 

1.4. Aim of the Investigation 

In this study, we investigated four groups of dogs, namely, Lundehund, Buhund and 

first- (F1) and second- (F2) generation Lundehund x Buhund crosses generated by the res-

cue project (Figure 1), to compare genetic diversity in the four groups. Although few out-

crossed individuals are available for investigation so far, these dogs and, hence, their ge-

netic profiles are vital for the rescue program. To allow comparison, the four groups were 

made of a similar sample size, where the F1 group had the fewest individuals due to the 

constraints described above. We predicted that the F2 dogs would show genome-wide 

diversity levels that were higher than those of Lundehund individuals but lower than 

those of the F1 and Buhund dogs. We assessed the four groups of dogs by combining 

genomic analyses of SNP profiles and data simulations. 

2. Materials and Methods 

2.1. Samples 

Due to the non-invasive nature of DNA sampling (by buccal swabs), it was not nec-

essary to apply for ethical approval of animal procedures to the Norwegian Animal Re-

search Authority. In all cases, the collection of samples from individual dogs was ap-

proved by the dog owner. The following four dog groups were included in the study: 

Lundehund (n = 12), Buhund (n = 12), first-generation crosses Lundehund × Buhund (F1, 

n = 7) and first-generation backcrosses F1 × Lundehund (F2, n = 12). For an overview of 

the relatedness among individuals, see Appendix A. All dogs were DNA sampled with 

non-invasive buccal swabs, and the DNA was extracted with the Isohelix DDK-50 isola-

tion kit. This sampling method is widely used and has been demonstrated to provide 

DNA of good quality, suitable for SNP studies [26]. The samples were genotyped with the 

Canine HD Bead Chip (Illumina) with 172,115 SNPs, and their quality was screened in 

GenomeStudio (Illumina) according to the program guidelines (http://www.illu-

mina.com/Documents/products/technotes/technote_infinium_genotyping_data_analy-

sis.pdf accessed on 10.01.2022). We screened individual profiles in PLINK v.1.90 [27] 

(https://www.cog-genomics.org/plink/1.9/accessed on day month year) and retained dogs 

with individual and per-SNP call rates of >90%, resulting in 111,542 autosomal SNPs (gen-

otyping rate > 0.99) for a total of 41 dogs. The profiles of two F2 dogs did not pass the 

screening process and were removed, resulting in n = 12 (6 females, 6 males) Lundehund, 

n = 12 (6 females, 6 males) Buhund, n = 7 (5 females, 2 males) F1 individuals and n = 10 (5 

females, 5 males) F2 individuals. Next, we pruned the data for loci in linkage disequilib-

rium (LD), with a window size of 50 SNPs, a sliding window of 5 loci and a variance 

inflation factor threshold of 2 (PLINK command --indep 50 5 2), resulting in 8182 SNPs 

(henceforth the 8K dataset). Because the conservative LD pruning substantially reduced 

the number of SNP loci, we also performed a second, less stringent pruning that would 
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retain more loci for assessment of runs of homozygosity (ROHs). The second dataset was 

obtained by filtering as described above but with pairwise genotype associations (r2) > 0.9 

(--indep-pairwise 50 5 0.9 in PLINK), which retained 34,725 loci (henceforth 34K dataset). 

2.2. Statistical Analyses 

Genetic variability in each population was assessed by the calculation of observed 

heterozygosity (Ho); unbiased expected heterozygosity (uHE), an unbiased estimator of 

genetic diversity; the inbreeding coefficient (FIS); and the mean percentage of polymor-

phic loci (P) in GenAlEx 6.501 [28] (definitions and formulae are provided in Appendix A 

of the software manual). For HO, the skewness (a measure of the symmetry of a distribu-

tion), kurtosis (a measure of whether the data are heavy tailed or light tailed relative to a 

normal distribution), medians and 25% and 75% percentiles were calculated for every dog 

group. Because inbreeding will reduce heterozygosity and result in a skewed distribution 

with few loci showing high heterozygosity (a distribution with a long tail), this will pro-

duce high kurtosis (a peaked distribution). Because measures that assume a normal dis-

tribution in the data may perform less well when this condition is not met, it is relevant 

to monitor skewness and kurtosis [29,30], and these parameters can provide important 

information for the temporal analyses of genetic diversity. 

The cumulative curves (representing the cumulative frequency distribution) for the 

Ho and uHE for every dog group were plotted for all the 8182 loci investigated, and the 

cumulative curves were compared among the groups. 

We next investigated deviations from Hardy–Weinberg equilibrium (HWE) within 

each dog group with a statistical test in GENEPOP v4.3 [31]. 

Pairwise FST values were calculated for all combinations of dog groups to determine 

the degree of genetic differentiation using GenAlEx, and the Fisher’s exact probability test 

for genic differentiation was carried out using GENEPOP. We examined ROHs per group 

with the 34K dataset in PLINK (--homozyg–homozyg-group) with default parameter set-

tings, and because of the small sample size, we included ROHs found in two or more 

individuals. We then plotted the results per autosomal chromosome for each of the four 

groups to visualize the differences among groups and among chromosomes. 

3. Results 

We first sought to validate the SNP data against the previous estimates of extremely 

low genetic diversity for the Lundehund and higher diversity for the Buhund. The mean 

Ho values for the four groups varied from 0.043 (Lundehund) to 0.272 (F1) (Table 1). The 

median Ho values were equal to zero for the Lundehund and the F2, indicating that more 

than 50% of the loci investigated were homozygotic, whereas the F1 and the Buhund 

showed a median value different from zero, indicating that more than 50% of the loci 

investigated were heterozygotes. 

Table 1. Summary of the observed heterozygosity (Ho) (estimated from 8184 linkage-disequilib-

rium-pruned loci) from each of the 4 dog groups: Lundehund (LUN), Buhund (BUH), first-genera-

tion crosses LUN × BUH (F1) and first-generation backcrosses F1 × Lundehund (F2). The number 

of individuals sampled in each group (n), the mean Ho, the standard error of the mean (S.E.), the 

median Ho, the 25% and 75% percentiles, the skewness and the kurtosis of the Ho distributions 

are shown. 

 LUN Ho BUH Ho F1 Ho F2 Ho 

n 12 12 7 10 

Mean 0.043 0.269 0.272 0.153 

S.E. 0.001 0.002 0.004 0.002 

Median 0 0.273 0.167 0 

25% 0 0.091 0 0 

75% 0 0.455 0.5 0.25 
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Skewness 3.456 0.534 0.956 1.402 

Kurtosis −4009.148 −659.838 −680.202 −1108.418 

Only the Buhund showed a 25% percentile different from zero, illustrating that less 

than 25% of the loci were homozygotic in the Buhund. In contrast, only the Lundehund 

showed a 75% percentile equal to zero, indicating that more than 75% of the loci investi-

gated were homozygotic in the Lundehund (Table 1). 

The skewness values were all positive, ranging from 0.534 (Buhund) to 3.456 (Lun-

dehund), whereas the kurtosis ranged from −4009.148 (Lundehund) to 680.202 (F1) (Table 

1). The cumulative distribution curves of the heterozygosity for the 8182 variable loci 

showed clear differences among the different groups, with the Buhund showing the high-

est heterozygosity (as shown by the number of homozygous loci and by the curve, which 

exhibits the most gentle slope among the four groups). The Lundehund instead showed 

the lowest heterozygosity, and the F1 and F2 crosses showed intermediate values. It is 

noteworthy that, of the 8182 loci, the Buhund had less than 1000 homozygous loci, 

whereas the Lundehund had more than 7000 homozygous loci (Figure 2a,b). 

 

Figure 2. Cumulative curves of the observed heterozygosity (Ho) (a) and unbiased expected heter-

ozygosity (uHE) (b) estimated from 8184 loci of the 4 dog groups: Lundehund, Buhund, first-gen-

eration crosses F1 (Lundehund × Buhund) and first-generation backcrosses F2 (F1 × Lundehund). 

The lines show a decline in the number of loci with a certain range of Ho and uHe (the lengths of 

the horizontal lines) per generation. In the parental generation, the Buhund has the longest hori-

zontal lines followed by the F1 generation, the F2 generation and, finally, the Lundehund. 

Genetic variability parameters, including unbiased heterozygosity (uHE), inbreeding 

coefficient (FIS) and the mean percentage of polymorphic loci (P), are listed in Table 2. 
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Table 2. Indices of genetic diversity per group: Lundehund (LUN), Buhund (BUH), first-generation 

crosses LUN × BUH (F1) and first-generation backcrosses F1 × LUN (F2). The table presents the 

unbiased expected heterozygosity (uHE) and inbreeding coefficient (FIS) and their respective stand-

ard errors, the Hardy–Weinberg test (HWE) and the mean percentage of polymorphic loci (P). 

Group uHE ± SE FIS ± SE HWE Test P 

LUN 0.041 ± 0.001 -0.083 ± 0.003 *** 12.74% 

BUH 0.267 ± 0.002 -0.051 ± 0.003 * 90.96% 

F1 0.195 ± 0.002 -0.420 ± 0.004 *** 50.89% 

F2 0.127 ± 0.002 -0.216 ± 0.002 *** 42.93% 

*** p < 0.001, * p < 0.05. 

Deviations from HWE were found to be highly significant (p < 0.001) for the F1, F2 

and Lundehund and significant (p < 0.05) for the Buhund. All the deviations were due to 

heterozygote excess as can be seen by the negative FIS values ranging from −0.420 (F1) to 

−0.051 (Buhund) (Table 2). The P ranged from 12.74% (Lundehund) to 90.96% (Buhund) 

(Table 2). 

All the pairwise FST comparisons were highly statistically significant (p < 0.001), with 

values ranging from 0.055 (F1–F2 comparison) to 0.424 (Lundehund–Buhund comparison) 

(Table 3). 

Table 3. Pairwise FST values (upper diagonal) of the four dog groups: Lundehund (LUN), Buhund 

(BUH), first-generation crosses LUN × BUH (F1) and first-generation backcrosses F1 × LUN (F2). All 

FST comparisons were highly statistically significant (p < 0.001). 

 BUH F1 F2 

LUN 0.424 0.319 0.134 

BUH  0.1241 0.252 

F1   0.319 

Runs of homozygosity (ROHs) indicate regions of the chromosome where a single 

genotype is contiguous. The ROH plot for the four dog groups showed, as expected, that 

the Lundehund had the highest number of ROHs, whereas no ROH was found in the first 

generation of crosses (F1) (Figure 3). Moreover, ROHs re-emerged in the next-generation 

F2, where they were more frequent and longer than those in the Buhund. The ROHs in 

the Lundehund included some long segments on chromosomes 9, 26 and 38 (Figure 3), 

and the number of ROHs per dog group was 247 for the Lundehund, 88 for the Buhund, 

none for the F1 and 116 for the F2.  
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Figure 3. Plots of runs of homozygosity (ROHs) per breed and per chromosome, showing ROHs 

shared by two or more individuals and based on 34K SNP loci. ROHs were relatively frequent in 

the Lundehund, and some were also detected in the Buhund, whereas none were observed in the 

F1 generation. Although we did not sample all the Lundehund individuals involved in the rescue 

project, the results show that the process has provided, at least temporarily, an increase in genetic 

diversity. 

4. Discussion 

Our analysis suggests that the initial part of the Lundehund genetic rescue project 

has been successful, although further work remains to be carried out until outcrossed in-

dividuals can be officially included in the studbook of the Lundehund breed. In the F1 

dogs, we observed a clear increase in unbiased heterozygosity (uHE) and the mean per-

centage of polymorphic loci (P) (Table 2). In the F2 generation, where the F1 dogs were 

backcrossed with Lundehund dogs, we observed the expected reduction in uHE and P 

compared to the F1s. These results illustrate the genetic rescue effect, as the uHE and P 

are higher in the F2 generation than in the parental Lundehund generation. 

The cumulative heterozygosity plots quantify the increase in the number of hetero-

zygous loci, which even reaches levels of uHE and Ho that are higher than those of the 

Buhund generation (see Figure 2a,b), where the Lundehund genotype has enriched diver-

sity over the Buhund in certain chromosomal regions. Additionally, the changes in the 

skewness and kurtosis of the genetic parameters reflect marked changes in the genomes 

across the generations. For example, the Lundehund’s strong positive Ho skewness (3.456) 

reflects an extremely depauperate genome with mostly homozygous loci. There are very 

few heterozygote loci in the tail of the distribution, i.e., with very low frequency, which 

illustrate the risk of an allele being lost, where the risk is inversely proportional to the 

allele’s frequency. Hence, several loci in the Lundehund are at risk of becoming fixed in a 

few generations. 

Outcrossing with the Buhund considerably reduced the skewness in the F1 relative 

to that of the Lundehund (Table 1), although the value for the F1 was higher than that of 

the Buhund. It is noteworthy that if, instead of the median, we had used only the mean 

Ho for monitoring the changes in Ho across generations, we would have observed a min-

imal change in the F1 compared to the Buhund (Table 1). This discrepancy is a conse-

quence of the skewed distributions of the Ho. A higher skewness reflects an increase in 

the number of heterozygote loci, thus reducing the number of loci at risk of becoming 

fixed, which was the main reason for initiating the genetic rescue project. The highly 

skewed distributions of the genetic parameters also suggest that their medians are highly 

informative and complementary to the mean values. The use of mean values could other-

wise be misleading, as these only provide estimates for the central value of a distribution 
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if the distribution is symmetrical around the mean. For skewed distributions, the median 

is therefore a better descriptor of a distribution’s central value [29,30]. 

In the F2 generation, the skewness increased relative to that of the F1 generation 

(1.402 versus 0.956), because many loci that were heterozygotes in the F1 became homo-

zygotes when backcrossing with Lundehund dogs to create the F2. If we had used the 

mean Ho to compare the F2 and F1, we would have observed a reduction of 0.272 − 0.153 

= 0.119, which is equivalent to a reduction of 43.75%, but the medians show a more dra-

matic scenario with more than 50% of homozygous loci. However, there are fewer homo-

zygous loci in the F2 compared to the Lundehund, even if the 75% upper quantile in the 

F2 was reduced compared to the F1 (Table 1).The kurtosis values were not very informa-

tive in this investigation, as their values were strongly influenced by the strong asym-

metry of the distributions of the Ho values. 

Although genetic rescue efforts have provided successful results for various species 

and populations [1], additional gene flow may be needed to ensure persistence over the 

long term [5,32]. Despite uHE, P and FIS being increased in the F2, we can clearly see that 

backcrossing the F1 with the Lundehund reduced the genetic distance between the F2 and 

the parental Lundehund (FST = 0.134) compared to the distance between the F1 and the 

parental Lundehund (FST = 0.319). A future backcross of the F2 with the Lundehund could 

further reduce the genetic distance between the next generation (F3) and the parental pop-

ulation and result in an additional loss of genetic variability. 

The ROH results reflect the genetic rescue effect by illustrating the differences be-

tween the Lundehund genome and that of the other groups. However, the immediate 

backcrossing with the F1 and the Lundehund to form the F2 resulted in the rapid re-emer-

gence of several ROH segments. This also raises the question of whether additional cross-

ing between F2 individuals or the possible crossing of F2 individuals from different types 

of crossings (Lundehund x Buhund, Lundehund x Icelandic sheepdog and Lundehund x 

Norrbottenspets) could present alternative scenarios for preserving genetic diversity and 

reducing homozygosity in future generations. 

5. Conclusions 

This study clearly documents the beneficial genetic effect of outcrossing a highly in-

bred dog population. It also documents that backcrossing the F1 generation to the parental 

population results in a loss of some of the desired heterozygosity achieved in the initial 

outcross. To preserve the characteristics of the Lundehund, the F2 dogs were made by 

crossing the F1 with the Lundehund and not with other F2 dogs from different lineages. 

While subsequent backcross of the F1 with the Buhund would have produced an F2 gen-

eration with higher levels of heterozygosity than those achieved by the F1 × Lundehund 

cross, our study quantifies the effect that the immediate backcross strategy had on the 

genetic diversity of the F2 dogs. Thus, stakeholders in the program and in future genetic 

rescue projects can use this data in combination with health data for the F1 and F2 animals 

to evaluate the effectiveness of the genetic rescue program so far. Our results indicate that 

additional crossbreeding would extend and augment the genetic rescue process. These 

include crossing among F2 dogs from the three different breeds involved in the outcross-

ing project (Buhund, Norrbottenspets and Icelandic sheepdog) to further increase and 

maintain genetic diversity. A careful evaluation of the resulting phenotypes, particularly 

with respect to LS [15–19], could help identify the genes involved in the disease and, thus, 

allow selection of the desired variants for the breeding program. 
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Appendix A 

Family trees showing the first two outcrosses of the Lundehund with the Buhund, 

followed by backcrosses with the Lundehund. Female individuals are represented by cir-

cles, and male individuals are represented by squares. The individuals included in these 

analyses are marked with a thicker outline. The Lundehund and Buhund individuals in-

cluded in the breeding project were unrelated by pedigree for at least three generations. 
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